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5.4 BETTER RANDOM NUMBERS

Variance reduction methods and antithetic sampling

Monte-Carlo is easy to understand and implement, and adequate in virtually
any valuation context, but it is expensive in CPU time and its convergence in
the number of paths is slow. A vast amount of research, collectively known
as variance reduction methods, conducted in the past decades, attempted to
accelerate its convergence.

Perhaps the simplest variance reduction technique is antithetic sampling.
For every path generated with the uniform vector U = (U1, ...,UD), generate
another one with its antithetic:

(1 − U1, ...,1 − UD)

Not only does antithetic sampling balance the paths with a desirable sym-
metry, it also generates two paths for the cost of one random vector.

When the scheme consumes Gaussian numbers, antithetic sampling is
even more efficient: for every path generated with the Gaussian vector G,
generate another one with −G, guaranteeing that the empirical mean of all
components in the Gaussian vector is zero. This is a simple case of a family
of variance reduction methods called control variates, where the simulation
enforces that the empirical values of sample statistics such as means, stan-
dard deviations, or correlations match theoretical targets. In addition, we get
two paths for the cost of one Gaussian vector, saving not only the generation
of the uniforms, but also the not-so-cheap Gaussian transformations.

Antithetic sampling is a simple notion and translates into equally simple
code. We implement antithetic sampling with mrg32k3a in the next chapter.
We will mention other variance reduction methods, but we don’t discuss
them in detail, referring readers to chapter 4 of [62]. What we do cover is a
special breed of “random” numbers particularly well suited to Monte-Carlo
simulations.

Monte-Carlo as a numerical integration

We reiterate the sequence of steps involved in a Monte-Carlo valuation.11

We generate and evaluate N paths, each path number i following the steps:

1. Pick a uniform random vector Ui in the hypercube in dimension D:

Ui = (uik) ∈ (0,1)D

11Assuming the simulation scheme consumes Gaussian numbers, as is almost always
the case.
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2. Turn Ui into a Gaussian vector with the application of the inverse cumu-
lative Gaussian distribution N−1 to its components:

Ni = (nik) = G(Ui) = (N−1(uik))

3. Feed the Gaussian vector Ni to the simulation scheme to produce a path
Xi for the model’s state vector X over the simulation timeline:

Xi = (Xi
Tj
)0≤j≤M = v(Ni)

4. Use the model’s mapping to turn the path Xi into a collection of samples
Si over the event dates:

Si = (Si
Tj
)1≤j≤J = 𝜁 (Xi)

5. Compute the product’s payoff gi on this path:

gi = g(Si)

Hence, gi is obtained from Ui through a series of successive transforma-
tions. Therefore:

gi = h(Ui)

where h ≡ g ∘ 𝜁 ∘ v ∘ G:

Gaussian Transform

Scenario
(Market Variables)

Correlated
Brownian Paths

SDE
(Euler)

gosoxowog

Payoff

U G=[N–1(u)]

W=w(G)

X=x(W)

P=g(S)

S=s(X)
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The MC estimate of the value is:

V0 = 1
N

N∑

i=1

gi =
1
N

N∑

i=1

h(Ui)

The theoretical value (modulo discrete time) is:

V0 = E[h(U)] =
∫(0,1)D

h(u)du

Hence, Monte-Carlo is nothing more, nothing less, than the numerical
approximation of the integral of a (complicated) function h ∶ (0,1)D → ℝ
with a sequence (Ui)1≤i≤N of random samples drawn in the hypercube.

Koksma-Hhlawka inequality and low-discrepancy sequences

A random sequence of points is not necessarily the optimal choice for
numerical integration. Standard numerical integration schemes, covered,
for example, in [20], work in low dimension. Dimension is typically high in
finance. With Euler’s scheme, it is the number of time steps times the number
of factors. For a simple weekly monitored 3y barrier in Black and Scholes or
Dupire’s model, the dimension is 156. Typical dimension for exotics is in the
hundreds. For xVA and other regulations, it its generally in the thousands or
tens of thousands, due to the large number of factors required to accurately
simulate the large number of market variables affecting a netting set.

Numerical integration schemes would not work in such dimension, but
there exists one helpful mathematical result known as the Koksma-Hhlawka
inequality:

|V0 − V0| ≤ V(h)D[(Ui)1≤i≤N]

where the value and its estimate are defined above, the left-hand side is the
absolute simulation error, V is the variation of h, something we have little
control about, and D is the discrepancy of the sequence of points (Ui)1≤i≤N,
a measure of how well it fills the hypercube. Formally:

D[(ui)1≤i≤N] = sup
E=[0,t1)×...×[0,tD)

||||||

1
N

N∑

i=1

1{ui∈E} − VOL(E)
||||||

where VOL{E = [0, t1) × ... × [0, tD)} =
D∏

k=1
tk is the volume of the box

E. Hence, the discrepancy is the maximum error on the estimation of
volumes, a measure of how evenly the sequence fills the space.

The Koksma-Hhlawka inequality nicely separates the characteristic
V of the integrated function and the discrepancy D of the sequence of
points for the estimation. It follows that random sampling is not optimal.
Random sampling may cause clusters and holes in the hypercube, resulting
in poor evenness and high discrepancy. It is best to use sequences of points
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purposely designed to minimize discrepancy. A number of such sequences
were invented by Van Der Corput, Halton, or Faure, but the most successful
one, by far, was designed by Sobol in 1967 USSR [71].

The following picture provides a visual intuition of the discrepancy of
Sobol’s sequence. It compares 512 points drawn randomly in (0,1)2 on the
left to the 512 first Sobol points in dimension two on the right:

1

0.8

0.6

0.4

0.2

0
10.80.60.40.20

1

0.8

0.6

0.4

0.2

0
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It is clear to the naked eye that Sobol’s sequence effectively avoids the
holes and clusters inevitable with a random sequence and fills the hyper-
cube with a better “evenness.” The mathematical notion of discrepancy
formalizes the notion of “evenness,” and the Koksma-Hhlawka inequality
demonstrates the intuition that better evenness results in a more accurate
integration.

Sobol’s sequence

The construction speed of Sobol’s sequence was massively improved in 1979
by Antonov and Saleev, whose algorithm generates successive Sobol points
extremely fast, with just a few low-level bit-wise operations. It is this imple-
mentation that is typically presented in literature, including here. Over the
past 20 years, Jaeckel [63] and Joe and Kuo [72], [73] performed consid-
erable work on Sobol’s direction numbers12 so that the sequence could be
practically applied in the very high dimension familiar to finance, achieving
remarkable results. Sobol’s sequence (with Antonov and Saleev’s optimiza-
tion and Jaeckel or Joe and Kuo’s direction numbers) became a best practice
in financial applications, which it remains to this day.

Sobol’s sequence is not really a sequence of points in the hypercube
(0,1)D, but a collection of D sequences of numbers in (0,1). The sequences of
scalar numbers (xd

i ) on each axis d of the sequence is self-contained, and the
first D coordinates of a sequence in dimension D′ > D exactly correspond
to the sequence in dimension D.

12Explained shortly.
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Sobol generates sequences of integers (yd
i ) between 0 and 232 − 1, so the

ith number on the axis d is:

xd
i =

yd
i

232
∈ (0,1)

The integers (yd
i ) on a given axis d are produced by recursion: yd

0 = 0
(the point 0 is not valid in Sobol; the first valid point is the point number 1)
and:

yd
i+1 = yd

i ⊕DNd
Ji

where⊕ denotes the bit-wise exclusive or (xor), Ji is the rightmost 0 bit in the
binary expansion of i, and {DNd

j ,0 ≤ j ≤ 31} are the 32 direction numbers
for the sequence number d.

The rightmost bit of every even number is 0; hence, once every two
points, Sobol’s recursion consists in xor-ing the first direction number DNd

0
to its state variable yd. The operation xor is associative and has the property
that:

x⊕ x = 0

so DNd
0 flicks in and out of the state yd every two points. For the same

reason, DNd
1 flicks in and out every four points, DNd

2 flicks in and out every
eight points, and, more generally, DNd

k
(with 0 ≤ k ≤ 31) flicks in and out

every 2k+1 points. Sobol’s sequence is illustrated below:

i yDN0 DN1 DN2 DN3

DN0

0 0 0 0 0

1 1 0 0 0

DN0 + DN12 1 1 0 0

DN13 0 1 0 0

DN1 + DN24 0 1 1 0

DN0 + DN26 1 0 1 0

DN27 0 0 1 0

DN0 + DN1 + DN25 1 1 1 0

DN2 + DN38 0 0 1 1

9 1 0 1 1

DN0 + DN1 + DN2 + DN310 1 1 1 1

DN1 + DN3

DN0 + DN3

DN3

12 0 1 0 1

DN0 + DN1 + DN313 1 1 0 1

14 1 0 0 1

15 0 0 0 1

DN1 + DN2 + DN3

DN0 + DN2 + DN3

11 0 1 1 1

0
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More generally, for i < 2k, the state yd
i is a combination of the k first

direction numbers:

yd
i =

k−1∑

j=0

ai
jDNd

j

where the weights ai
j are either zero or 1: a0 flicks every 2 points, a1 every 4

points, a2 every 8 points, aj every 2j+1 points. It follows, importantly, that the
2k first points in the sequence yd

i ,0 ≤ i < 2k span all the 2k possible combi-
nations of the k first direction numbers, each combination being represented
exactly once.

It follows that the Sobol scalar xd
i in (0,1) is:

xd
i =

yd
i

232
=

k−1∑

j=0

aj

DNd
j

232
=

k−1∑

j=0

ajD
d
j

where the Dd
j ≡

DNd
j

232 are the normalized direction numbers.

Direction numbers on the first axis

On the first axis d = 0, the direction numbers are simply:

DN0
k
= 231−k

and it follows that the normalized numbers are:

D0
k
= 1

2k+1

so the sequence of the 32 normalized direction numbers D0
k

is 1
2
, 1

4
, 1

8
, 1

16
,

etc. Or, bit-wise, the kth direction number DN0
k

has a bit of 1, k spaces from
the right, and 0 everywhere else:

space
bit
k
DN
D

31
0
0

2^31
1/2

30
0
1

2^30
1/4

29
kth direction number of the first axis

0 everywhere on the left 0 everywhere on the right
The kth direction number

has bit 1 on space k

0
2

2^29
1/8

1
0

30
2

2^(-31)

0
0
31
1

2^(-32)

31-k
1
k

2^(31-k)
2^(-k-1)

...
0
...
...
...

..
0

...

...
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It follows that the sequence of numbers on the first axis is:

x0
0 = 0

x0
1 = 1

2

x0
2 = 1

2
+ 1

4
= 3

4

x0
3 = 1

4

x0
4 = 1

4
+ 1

8
= 3

8

x0
5 = 1

2
+ 1

4
+ 1

8
= 7

8
...

or, graphically:

0 x7 x3 x4 x1 x6 x2 x5 1

where we see that the normalized direction number 1∕2k+1 does not kick in
before all the combinations of the 1∕2j for 1 ≤ j ≤ k were exhausted. It is
visible on the chart that x1 goes in the middle of the axis, x2 and x3 go in the
middle of the spaces on the left and right of x1, and the following four num-
bers go straight in the middle of the spaces left in the previous sequence. The
same pattern carries on indefinitely, progressively and incrementally filling
the axis in the middle of the spaces left by the previous numbers.

It follows that the first 2k Sobol scalars on the first axis (2k − 1 excluding
the first and invalid scalar x0 = 0) evenly span the axis (0,1):

{x0
j ,1 ≤ j < 2k} =

{
j

2k
,1 ≤ j < 2k

}

and we begin to build an intuition for the performance of the sequence:
the 2k − 1 first “random” numbers are even quantiles of the uniform dis-
tribution. When transformed into a Gaussian or another distribution, these
numbers sample even quantiles on the target distribution.

Latin hypercube

This property, where the 2k − 1 first numbers are evenly spaced by 1∕2k on
the axis (0,1), holds for all the axes. Sobol samples the same numbers on all
the axes, but in a different order.

The direction numbers DNd
k

on all the axes have the following bit-wise
property:
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space
bit

31
1

30
0

29
kth direction number of any axis

Bits on the left are 0 or 1
depending on the axis d

All the right bits are 0
The kth bit is 1

1
1
0

0
0

31-k
1

...
0

..
0

The kth bit is still one, so 1∕2 still flicks in and out every two numbers,
1∕4 every four numbers, 1∕8 every eight numbers and so forth. The bits on
the right of k are still 0, so 1∕16 will not kick in before all the combinations
of 1∕2, 1∕4, and 1∕8 are exhausted. It follows that the 2k − 1 first numbers
are still the quantiles {j∕2k

,1 ≤ j < 2k}.
But the bits on the left of k are no longer all zero. Some are zero, some

are one, depending on the axis, and, crucially, they are different on different
axes. When the direction number DNd

k
flicks in or out every 2k+1 points in

the sequence, it doesn’t only flick 1∕2k+1. Its bits on the left of k also flick
some 1∕2j for j ≤ k, shuffling their order of flickering.

It follows that the same numbers are sampled on all the axes, but in
a different order. In addition, these numbers are even quantiles. The chart
below shows the first 15 Sobol points in dimension 2, where it is visible that
the points sample the 1∕16 quantiles on both axes, but in a different order.

15 first Sobol points in dimension 2
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This property where N points xi sample the hypercube (0,1)D in such a
way that for every coordinate d ∈ [0,D − 1]:

{xd
i ,0 ≤ i ≤ N − 1} =

{
i + 1

N + 1
,0 ≤ i ≤ N − 1

}

is not unique to Sobol and well known under the name latin hypercube.
Latin hypercube samples the coordinates in a balanced manner. It is a form of
control variate, since the N points correctly sample the 1∕(N + 1)th quantiles
of the marginal distributions by construction.

Latin hypercube may be implemented directly with a sampling strat-
egy known as balanced sampling: to produce N points in the hypercube,
sample the first axis with the sequence x0

i = i∕(N + 1) for 1 ≤ i ≤ N and
all the other axes by random permutations of the same values. Balanced
sampling improves the convergence of Monte-Carlo simulations over ran-
dom sampling, sometimes noticeably, and its construction is extremely effi-
cient. Instead of randomly shuffling uniform samples before applying the
Gaussian transformation, we can randomly shuffle the Gaussian quantiles
G0

i = N−1(i∕(N + 1)), so that the rather expensive Gaussian transformation
is only applied on the first axis N times instead of the usual ND. Balanced
sampling may be further optimized, both in speed and quality, in combina-
tion with antithetic sampling.

One catch is that balanced sampling is not an incremental sampling
strategy. We cannot sample N points and then P additional points. All the
points are generated together, coordinate by coordinate and not point by
point. To apply balance sampling in a path-wise simulation, the N random
vectors must be stored in memory and picked one by one, imposing a heavy
load on RAM and cache. Sobol, on the contrary, is an incremental variation
of the latin hypercube, whereby the points are delivered in a sequence, one
D-dimensional point at a time.

Latin hypercube evenly samples the marginal distributions, but offers
no guarantee for the joint distributions. An unfortunate draw may very well
sample two coordinates in a similar order, as illustrated below with 15 points
in dimension 2:
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Unfortunate latin hypercube draw

While the marginal distributions are still sampled evenly, it is clear that
the empirical joint distribution is wrong: the two random numbers, suppos-
edly independent, are 100% dependent in the sample. Seen from the dis-
crepancy perspective, it is visibly poor, the points being clustered around the
diagonal, leaving the rest of the space empty. Because the marginal distribu-
tions are correctly sampled, a simulation produced with the sample still cor-
rectly values all sets of European cash-flows, but the values of exotics would
be heavily biased due to the poor sampling of the copula (see Section 4.3).

It therefore appears that, while the latin hypercube property of random
numbers is a highly desirable one in the context of Monte-Carlo simulations,
it is not in itself sufficient to guarantee a correct representation of joint dis-
tributions or a low discrepancy. Additional mechanisms should be in place
so that the different axes are sampled in a dissimilar and independent order.
Sobol’s sequence achieves such “order independence” with the definition of
its direction numbers.

Direction numbers on all axes

We did not, in our short presentation, specify the direction numbers applied
in Sobol’s sequence. We did define the 32 direction numbers of the first axis,
and introduce a general property of all direction numbers, whereby the kth
bit of the kth direction number is always one and the bits on the right of k
are always zero. This is what guarantees the latin hypercube property. But
the sampling order depends on the bits on the left of k. These bits are zero
on the first axis, and specified in a different manner on all other axes, the
specification on a given axis determining the sampling order on that axis.
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The quality of the sequence, its ability to sample independent uniform
numbers on each axis, resulting in a low discrepancy over the hypercube,
therefore depends on the specification of the (left bits of the) direction num-
bers. Sobol [71] delivered a recursive mechanism for the construction of
the direction numbers, but it so happens that the starting values for the
recursion, called initializers, massively affect the quality of the sequence
in high dimension. Jaeckel [63] and Joe and Kuo [72], [73] found sets of
direction numbers that result in a high-quality sequence in high dimension.
Without such sets of high-quality direction numbers, Sobol’s sequence is
practically unusable in finance, the resulting Monte-Carlo estimates being
heavily biased in high dimension. It is only after the construction of direction
numbers was resolved that Sobol became best practice in finance.

The construction of the direction numbers is out of our scope. We
refer the interested readers to chapter 8 of [63]. Joe and Kuo’s dedicated
page, http://web.maths.unsw.edu.au/~fkuo/sobol/, collects many resources,
including papers, synthetic notes, various sets of direction numbers in
dimension up to 21,201, and demonstration code in C++ for the con-
struction of the direction numbers and the points in Sobol’s sequence.
Our implementation of the next chapter uses their direction numbers in
dimension up to 1,111 derived in their 2003 paper [72].
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