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D. Crisan and B. Rozovskiı̆

The increasing complexity of the modern world makes the analysis and syn-
thesis of high-volume data an essential feature in many real problems. Such
analysis is addressed by different disciplines and from different perspective
and, among them, nonlinear filtering features prominently. Nonlinear filter-
ing is distinguished from other approaches by its probabilistic (in particular,
Bayesian) nature. It is a field that combines aspects of stochastic analysis,
information theory, and statistical inference. To date, nonlinear filtering is a
mature theory that continues to expand by leaps and bounds. The breadth of its
applications, firmly established and still emerging, is simply astounding. Early
applications of nonlinear filtering such as cryptography, tracking, and guidance
were mostly of military nature. Since then, nonlinear filtering has became
an extremely potent tool in speech recognition, image and video processing,
genetics, financial modeling, Bayesian networks, etc.

The celebrated Kalman–Bucy filter, designed for linear dynamical systems
with linearly structured measurements, is probably the most famous Bayesian
filter. Its generalizations to nonlinear systems and/or nonlinear observations
are collectively referred to as nonlinear filtering (NLF). To put it succinctly,
nonlinear filtering is an extension of the Bayesian framework to the estimation,
prediction, and interpolation of nonlinear stochastic dynamics. Its output is
the distribution of the estimated process (the “signal”) given the data (the
“observations”) available. This distribution is commonly known as the posterior
distribution of the estimated process. It is a theoretically optimal algorithm in
that it provides the best estimate for the quantity of interest, more precisely, it
minimises the mean square error of the estimator.

An important special case of the NLF paradigm that addresses Markov type
dynamics is often referred to as Hidden Markov Models (HMM). It is an elegant
and illuminating example which illustrates the principles of nonlinear filtering
so it is worthwhile explaining it here.

Consider the following model: Let (Xt , t = 0, 1, 2, ...) and (Yt , t = 0, 1, 2, ...)
be two random sequences called, respectively, state and observations. The state
is not directly observable. It is modeled as a Markov chain with the transition
probability kernel Qt (x, y) and the initial distribution 0. The observation
sequence is related to the state by the formula
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2 D. Crisan & B. Rozovskiı̆

Yt = h (Xt ) + Ót ,

where Ót is random noise. The a priori information contained in this model
consists of the prior distribution 0, the transition probability kernel Qt (x, y),
and the distribution of Ó. The term “hidden Markov model” alludes to the fact
that the Markov chain Xt is hidden from the observer by a possibly nonlinear
transformation h (·) and the noise Ót . The task of nonlinear filtering is to com-
pute, at each time t, the posterior distribution t|t of the state Xt , in other words,
the conditional distribution of Xt given the observation Y0|t = (Y0, ..., Yt ). In this
setting, the posterior distribution satisfies a two-step recursion:

prediction : ϕt|t−1
(x) =

∫
Qt (x′, x) ϕt−1|t−1

(dx′)
and

correction : t|t (x) = �t (x) t|t−1
(x) /

∫
�t (x′) ϕt|t−1

(dx′) ,
(1.1)

where �t (x) = gt (yt−H(x)) is the likelihood function. The first step consists
in computing the conditional distribution of the state Xt given all but the last
observation, i.e., given (Y0, ..., Yt−1). The second step is the well-known Bayes
rule.

The early history of HMMs is shrouded in secrecy due to potential applica-
tions in cryptography. There exists an anecdotal evidence that the work on this
topic was done by engineers in the early sixties but did not really come out in
the open until the HMMs were “rediscovered” in late sixties. The crucial part
of the developed “technology” is usually referred to as Baum–Welch algorithm
(see papers [2] and [21]), particularly for frameworks where the state can take
can have only a finite number of values (finite state space).

In the continuous setting, the prediction and correction steps merge and the
posterior density t (x) = t|t (x) is given by the Bayes formula.

t (x) =
ϕt (x)

∫

t
ϕt

(
x′) dx′

. (1.2)

The unnormalized posterior density ϕt (x) is a solution of the following
equation:

ϕt (x) = 0
(x) +

∫ t

0

A∗ (s , x) ϕs (x) dt +
∫ t

0

hs (x)ϕs (x) dYs , (1.3)

where A∗ is the dual of the generator of the signal’s transition probability kernel
Qt (x, y) and Y is the observation process. In particular, if the signal is given by
the noisy kinematic equation

ẋt = a (t, xt ) + Ûẇt ,

where ẇt is white noise, then A∗ has the form
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Introduction 3

Aϕ (x) =
Û2

2

ϕ′′
t (x) − (a (t, x) ϕt (x))′ . (1.4)

In the mid-sixties, the continuous time setting nonlinear filtering problem
captured the attention of three young mathematicians: Duncan, Mortensen,
and Zakai. They studied aspects of nonlinear filtering as a natural general-
ization of the well known linear filtering results of Kalman and Bucy. In four
separate papers (two of them being PhD dissertations), they derived stochastic
differential equations for unnormalized posterior distribution of a state process
modeled by a continuous time Markov process. In paper [22], the state process
was modeled by a continuous time jump Markov process with countable state
space. The other three papers ([6], [16], and [23]) dealt with diffusion type
state processes. Equation (1.4) and its generalizations are often referred to as
Duncan–Mortensen–Zakai equation.

On the other hand, the (normalized) posterior density t (x) solves a non-
linear stochastic PDE, which is usually referred to as the Kushner equation
(see [12] (a corrected version of [11])). A more general version of the Kushner
equation was derived by A. Shiryaev ([19]). These papers triggered a surge of
activities in NLF during the late sixties and early seventies. The results of this
period in the development of NLF were summarized in the influential book by
R. Liptser and A. N. Shiryaev [14].

Note that Duncan–Mortensen–Zakai and Kushner equations are stochastic
partial differential equations (SPDEs). In the sixties and seventies, SPDEs con-
stituted a completely new subject for the stochastic community which quickly
became an active area of research. Thus, one unintended but very important
effect, triggered by the introduction of Duncan–Mortensen–Zakai and Kush-
ner equations, was the fast development of a general theory of SPDEs. The
first comprehensive accounts of these developments were published in [17]
and [18]. For more details see the contributions by Krylov and Kunita in this
volume.

Another milestone in the evolution of the theoretical side of NLF
was related to the introduction of martingale techniques in the paper
[7] by Fujisaki, Kallianpur and Kunita (more details can be found in
Kunita’s contribution in Part I of the Handbook). The martingale approach
made it possible to deal with very general and diverse models of state
and observations. Later on, Grigelionis and Mikulevicius extended the
Fujisaki–Kallianpur–Kunita theory to even larger set of processes, including
processes with irregular trajectories (see their contribution in Part I of the
handbook).

In the last twenty years, a very impressive progress was made also in the
study of asymptotic properties of SPDEs and, in particular, stability of nonlinear
filters. This field is covered in great detail in Part III of the handbook.
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4 D. Crisan & B. Rozovskiı̆

From the very beginning, Bayesian filtering, both linear and nonlinear, has
been an applied field. Numerous practical applications of Kalman filter and
Baum–Welch algorithm are well documented.

The simplicity of the nonlinear filtering algorithm, particularly in the dis-
crete setting, is deceptive. While being extremely effective and stable, it is
computationally expensive. Both the prediction and the correction step involve
computing integrals over the state space and these computations have to be
executed every time new observations arrive. Moreover, in many important
applications the computations have to be done in real time. Clearly, this is a
serious complication since direct quadrature methods are effective in real time
only when the dimension D of the state process is comparatively low (in general
D should be no larger than 3). In contrast, the Kalman filter can deal in real
time with hundreds of states. However, ad hoc extensions of linear Gaussian
filters to the nonlinear setting such as the Extended Kalman Filter, are usually
unsuccessful.

Fortunately, by the end of eighties two important factors have emerged: (a)
a massive increase of computing power; and (b) the proliferation of Bayesian
methodology into Monte Carlo simulations and vice versa.

For example, when implementing the Baum–Welch algorithm, one replaces
the quadratures in the two steps of (1.1) by two Monte Carlo procedures.
Nonlinear filtering algorithms based on Monte Carlo averaging are often called
sequential Monte Carlo methods (SMCM) or particle filters. Such algorithms
approximate of the posterior distribution using the empirical distribution of
a system of n particles which evolve (mutate) according to the law of of the
state. After each mutation the system is corrected: each particle is replaced by
a random number of particles whose mean is proportional to the likelihood of
the position of the particle. The most popular method for correcting the system
is to sample with replacement n times from the empirical distribution of the
population of particles weighted by their normalized likelihoods. The following
is a simple algorithmic description of a garden variety sequential Monte Carlo
method:

1. Initialization [t = 0].
For i = 1, . . . , n, sample x(i )

0
from 0.

2. Iteration [t − 1 to t ].
Let x(i )

t−1
, i = 1, . . . , n be the positions of the particles at time t − 1.

(a) For i = 1, . . . , n, sample x̄(i )
t from Qt−1(x(i )

t−1
, x)dx. Compute the (nor-

malized) weight w
(i )
t = gt (x̄

(i )
t )/(

∑n
j =1

gt (x̄
( j )
t )).

(b) Pick x(i )
t by sampling with replacement from the set of particle

positions (x̄(1)
t , x̄(2)

t , . . . , x̄(n)
t ) according to the probability vector of nor-

malized weights (w(1)
t , w

(2)
t , . . . , w

(n)
t ), i = 1, . . . , n.
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Introduction 5

The approximation n
t of the posterior distribution is n

t =
1

n

n∑

i=1

‰x
(i )
t
, where x(i )

t

for i = 1, . . . , n are the positions of the particles obtained after the second step
of the iteration.

Following part (a) of the iteration, each particle changes its position according
to the transition kernel of the signal. Step (a) of the algorithm is known as the
importance sampling step (popular in the statistics literature) or mutation step
(inherited from the genetic algorithms literature).

Step (b) of the iteration is called the selection step. The particles obtained
after the first step of the recursion are multiplied or discarded according to
the magnitude of the likelihood weights. In turn, the likelihood weights are
proportional to the likelihood of the new observation given the corresponding
position of the particle. The net effect of part (b) of the iteration is that it discards
particles in unlikely positions and multiplies those in more likely ones. The
particle filter with this choice of offspring distribution is called the bootstrap
filter or the sampling importance resampling algorithm (SIR algorithm). It was
introduced by Gordon, Salmond, and Smith in [8]. Within the context of the
bootstrap filter, the second step is called the resampling step.

The theory of nonlinear filtering was well prepared for assimilating and
expanding the particle approach. In particular, the Lagrangian approach to NLF,
developed in the late 1970s and early 1980s (see [13], [10]), turned out to be
a helpful framework for particle filters. The Lagrangian representations for
forward and backward dynamics of the optimal filter, often called averaging
over characteristics formulae, generalize the famous Feynman–Kac representa-
tion of solutions for deterministic parabolic equations. The averaging in these
formulas is conditioned on the available observations. The Lagrangian charac-
teristics model the stochastic dynamics of the Monte Carlo particles.

Various versions of the optimal nonlinear filters based on Monte Carlo
resampling were developed in the 1990s, in particular, interacting particle filter,
sampling/importance resampling particles filter, branching particles filter, etc.
For a review, see [5], [4], [1] and the contributions in Part VII of the handbook.

The introduction of particle filters has influenced fundamentally the area of
nonlinear filtering. It has extended the reach of NLF to higher dimensional
applications and, therefore, enlarged the range of practical applicability of non-
linear filtering. It has also posed many new problems and opened new avenues
of research. In our opinion, it is the most important development in the last two
decades of research in nonlinear filtering.

We complete the introduction with a description of the contributions com-
prising the handbook.

The first two parts of the handbook contain classical theoretical results related
to the filtering equations covered by six contributions. They are as follows:
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6 D. Crisan & B. Rozovskiı̆

The contribution of Kunita is a two-part introduction to nonlinear filtering.
In the first part, the filtering problem in discrete time is analysed together
with some preliminary results on stochastic calculus required for the study of
continuous time nonlinear filtering. The Bayes formula for the computation
of the nonlinear filter is derived and the existence of the innovation process is
discussed. In the second part, the filtering equations are derived for a general
class of system processes having the semimartingale property and the Cauchy
problem associated with these equations is studied: existence, uniqueness, and
smoothness results are included.

The filtering problem corresponding to processes with jumps is analyzed in
the chapter of Grigelionis and Mikulevicius. The existence and uniqueness of
the solutions of the filtering equations are discussed. Some examples and an
application in financial mathematics (volatility tracking) are included.

In the contribution of Kurtz and Nappo, the signal process is defined as the
solution of a martingale problem and its conditional distribution with respect
to the observation filtration is recast as the solution of a filtered martingale
problem. It is shown that uniqueness for the signal’s martingale problem
implies uniqueness for the filtered martingale problem which in turn implies
the Markov property for the conditional distribution considered as a probability
measure-valued process. Other applications include a Markov mapping theo-
rem and uniqueness for the filtering equations.

In the chapter by Krylov, the smoothness in Lp sense of filtering densities is
discussed. The filtering equations are normally considered in terms of formal
adjoint of operators in nondivergence form. Here they are rewritten in the
divergence form and the smoothness of solutions is established under very
general conditions (Lipschitz continuity of the coefficients of the system).

Two different applications of the Malliavin calculus to nonlinear filtering are
discussed in the contribution of Chaleyat-Maurel. The first one deals with the
existence and smoothness of a density for conditional laws in filtering theory,
whereas the second one is concerned with the problem of the existence or
nonexistence of finite-dimensional filters. The two applications are different in
nature. In the first one, the observation is considered as fixed, and the Malliavin
calculus is applied to the signal in a finite-dimensional approach. In the second
one, the Malliavin calculus is applied to the observation through the Zakai
equation, which is a stochastic partial differential equation, and the setting is
thus infinite dimensional.

The chapter by Lototsky discusses various methods of solving the nonlinear
filtering problems using expansions of the optimal filter in the chaos space of
the observation process. The elements of the expansion can be either multiple
integrals or the Cameron–Martin basis. Two particular filtering algorithms are
discussed for the time-homogeneous diffusion filtering model with possible
correlation between the state process and the observation noise. Both algo-
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Introduction 7

rithms rely on the Cameron–Martin version of the chaos expansion, and the
approximate filter is a finite linear combination of the chaos elements generated
by the observation process. The coefficients in the expansion depend only on the
deterministic dynamics of the state and observation processes.

Part III of the handbook covers stability properties and asymptotic analysis
of the filtering solution. It includes the following:

The chapter by Kleptsyna and Veretennikov presents some of their
recent results for the filtering problem for which the signal has an
unknown/unspecified initial condition. The authors show that, under suitable
conditions, the filtering algorithm forgets its wrong initial data in the long
run, that is, the difference between the conditional measures provided by the
filtering algorithm with the exact and wrong initial data converges to zero in
some suitable topology. Both the discrete and the continuous frameworks are
discussed.

The contribution by Atar presents a review of tools from multiplicative
ergodic theory and the theory of positive operators and their usage in the
analysis of exponential stability of the optimal nonlinear filter. Particularly, in
the case of finite state, the chapter studies the filter sensitivity to perturbations
in its initial data and its relation to the Lyapunov spectral gap associated with
the filtering equation. In a general setting, it is shown how the Hilbert’s metric
and Birkhoff’s contraction coefficient are used to estimate the decay rate of the
error.

The chapter by Chigansky, Liptser, and Van Handel presents a survey of some
intrinsic methods for studying the stability of the nonlinear filter. These intrinsic
methods are methods which directly exploit the fundamental representation of
the filter as a conditional expectation through classical probabilistic techniques
such as change of measure, martingale convergence, coupling, etc. These
methods allow one to establish stability of the filter under weaker conditions
compared to other methods, e.g., to go beyond strong mixing signals, to reveal
connections between filter stability and classical notions of observability, and to
discover links to martingale convergence and information theory.

The contribution of Budhiraja describes conditions under which the solu-
tion of the filtering problem satisfies the Feller property and the existence of
invariant measures. It also studies the ergodicity of the nonlinear filter and
gives some sufficient conditions, under which this property holds, phrased in
terms of certain stability properties of the nonlinear filter, for example, the finite
memory property or asymptotic stability.

The chapter by Stannat gives an overview on results of stability of the optimal
filter for nonergodic signal processes with state space R

d observed with inde-
pendent additive noise, both in discrete and continuous time. Explicit lower
bounds on the rate of stability in terms of the coefficients of the signal and
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8 D. Crisan & B. Rozovskiı̆

the observation are obtained, using a parabolic ground state transform with
respect to log-concave measures of the recursive algorithm for the optimal filter.
The lower bounds in the time-continuous case are obtained as limits of lower
bounds for appropriate time-discrete approximations. As particular examples,
the Kalman and the Kalman–Bucy filters and filters with signals induced by
gradient-type stochastic differential equations are discussed.

Part IV of the handbook includes several special topics, which we describe
briefly below:

The pathwise theory of filtering is discussed in the contribution of Davis. This
theory is concerned with casting the filtering equations in a form in which
the filtering estimates can be computed separately for each sample path of
the observation process. The chapter presents a pathwise theory for the case
where the signal is a diffusion on a finite-dimensional manifold and there is
correlation with the observation noise. A geometric setting is natural for this
problem, which also brings in Kunita’s decomposition theorem for solutions of
stochastic differential equations and a family of observation-dependent multi-
plicative functionals of the signal process.

It turns out that the observation process can be decomposed into two com-
ponents. One is the integral of the expectation of a function of the signal
conditioned with respect to the observation data. The second one is a Brownian
motion adapted to the observation filtration, called the innovation process. The
natural filtration of the innovation process is included in, but not necessarily
equal to the observation filtration. Establishing the cases where the two filtra-
tions are equal has become known as the innovation problem. The contribution
of Heunis establishes conditions under which the two filtrations are equal.

The paper of Duncan discusses some results for nonlinear filtering problems
where the processes satisfy stochastic differential equations driven by fractional
Brownian motions. Fractional Brownian motions are a family of Gaussian
processes that include the standard Brownian motion and that seem to be
appropriate models for many physical phenomena. The paper covers properties
of the family of fractional Brownian motions and the explicit expressions for
the Radon–Nikodym derivatives appearing in the formulae for the solution of
the filtering problem. It also contains: a stochastic integral equation for the
evolution of the conditional expectation of a function of the state process, results
for the prediction of processes generated by a fractional Brownian motion and
two relations between filtering and mutual information.

Part V of the handbook covers the topics of estimation and control in nonlin-
ear filtering.

The contribution of Newton investigates nonlinear filtering from an informa-
tion theoretic viewpoint. At its heart are two distinct dualities: one is a feature
of time reversal, the other is an instance of an abstract Fenchel–Legendre trans-
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Introduction 9

form for Bayesian estimators. The first duality arises from a time symmetry
in the joint dynamics of the signal process and its nonlinear filter. The second
duality is that between the full information of a log-likelihood function and the
information gain of the corresponding posterior distribution in the context of
Bayesian estimation. By applying this duality to the path estimation problems
associated with the forward and reverse time filters, forward and backward sto-
chastic optimal control problems are obtained, in which the two filters appear in
the value functions. The second duality, applied in this way, becomes the duality
between estimation and control.

The contribution of Bensoussan, Cakanyıldırım, and Sethi develops a general
filtering framework for the problem of estimating the state of a system whose
dynamics are governed by a discrete-time Markov process. The chapter presents
a number of applications to inventory control systems with partial observations.
The authors show how one can transform the nonlinear transition equations
into linear ones. This transformation facilitates considerably the study of the
associated control problem and the corresponding Bellman equation in a con-
venient functional space.

The contribution of Bar-Shalom and Blom studies stochastic hybrid sys-
tems. These are two component Markov processes {xt , Ët}, where {Ët} is a
Markov chain and {xt} is the solution of a stochastic difference equation (SDE)
whose coefficients depend of {Ët}. The chapter covers the exact Bayesian filter
recursions and particle filter approximations for these two component Markov
processes. During the development of the exact and particle filter recursions, a
key role is played by the exact equations that form the basis of the Interacting
Multiple Model filter.

Part VI of the handbook includes several topics related to the approximation
theory for the filtering problem. The following are covered:

The filtering problem consists, in particular, in finding the best (in the sense
of mean-square error) Yt -measurable estimator X̂t of the signal Xt , that is the
minimizer of the filtering error

Pt = E
[
(Xt − X̂t )(Xt − X̂t )T

]
,

where (Xt − X̂t )T is the row vector associated to (Xt − X̂t ). Of course X̂t =
E[Xt |Yt ]. Explicit expressions for X̂t and, respectively, Pt are typically hard to
obtain. The chapter of Zeitouni investigates a-priori bounds (both upper and
lower) of the matrix Pt . Of particular interest are the bounds that are tight when
the observation noise is small.

As stated above, the solution of the continuous time filtering problem can
be represented as a ratio of two expectations of certain functionals of the
signal process. These functionals are parametrized by the observation path
{Ys , s ≥ 0}. However, in practical applications, only the values of the observation
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10 D. Crisan & B. Rozovskiı̆

corresponding to a discrete time partition are available, i.e.,
{
Yti , i = 0, 1, ...

}
.

This leads to an approximation of the filtering solution in terms of function-
als parametrized by these discrete observations. The convergence rate of this
approximation as a function of the partition mesh is studied in the contribution
of Crisan. It is shown that the two critical factors that influence the order of
convergence are the smoothness of the semigroup associated to the signal and
the smoothness of the sensor function h.

The chapter by Le Gland, Monbet, and Tran discusses the ensemble Kalman
filter (EnKF). Interpreting the ensemble elements as a population of particles
with mean-field interactions, the authors prove the convergence of the EnKF,
with the classical rate 1/

√
N, as the number N of ensemble elements increases

to infinity. In the linear case, the limit of the empirical distribution of the
ensemble elements is the usual (Gaussian distribution associated with the)
Kalman filter, as expected, but in the more general case of a nonlinear state
equation with linear observations, this limit differs from the usual Bayesian
filter.

Part VII covers the particle approach for solving the filtering problem. It
includes the following contributions:

The contribution of Xiong is a survey of recent results on the particle system
approximations to filtering problems in continuous time. Firstly, a weighted
particle system representation of the optimal filter is given and a numerical
scheme based on this representation is presented together with the convergence
result to the optimal filter. Secondly, to reduce the estimation error due to
the exponential growth of the variance for individual weights, a branching
weighted particle system is defined and an approximate filter based on this
particle system is included. Its approximate optimality is proved and the rate
of convergence is characterized by a central limit type theorem. Thirdly, as
an alternative approach in reducing the estimate error, an interacting particle
system (with neither branching nor weights) to direct the particles toward more
likely regions is proposed and the corresponding convergence result for this
system is established. Finally, the weighted branching particle systems is used
to approximate the optimal filter for the model with point process observations.

The contribution of Doucet and Johansen is a survey of results on particle
system approximations for filtering problems in discrete time. Just as in the
continuous time framework, optimal estimation problems for discrete nonlin-
ear non-Gaussian state-space models do not typically admit analytic solutions.
Since their introduction in 1993, particle filtering methods have become a very
popular class of algorithms to solve these estimation problems numerically in
an online manner, i.e. recursively, as observations become available. Particle
filtering methods are now routinely used in fields as diverse as computer vision,
econometrics, robotics and navigation. The objective of the contribution is to
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Introduction 11

provide a complete, up-to-date survey of this field. Basic and advanced particle
methods for filtering, as well as smoothing, are presented.

The contribution by Del Moral, Patras, and Rubenthaler presents a mean field
particle theory for the numerical approximation of Feynman–Kac path integrals
in the context of nonlinear filtering. The authors show that the conditional
distribution of the signal paths given a series of noisy and partial observation
data is approximated by the occupation measure of a genealogical tree model
associated with mean field interacting particle model. The complete historical
model converges to the McKean distribution of the paths of a nonlinear Markov
chain dictated by the mean field interpretation model. The chapter also contains
a review of the stability properties and the asymptotic analysis of these interact-
ing processes, including fluctuation theorems and large deviation principles
and a Laurent type and algebraic tree-based integral representations of particle
block distributions.

The chapter by Schön, Gustafsson, and Karlsson contains a number of real-
time applications of the particle filter (PF) in both the signal processing and the
robotics communities. The authors present several applications to positioning
of moving platforms detailing the experiences of using the PF in practice. The
applications concern positioning of underwater vessels, surface ships, cars, and
aircraft using geographical information systems containing a database with
features of the surrounding. In the robotics community, the PF has been devel-
oped into one of the main algorithms (FastSLAM) for solving the simultaneous
localization and mapping (SLAM) problem. This can be seen as an extension
to the aforementioned applications, where the features in the geographical
information system are dynamically detected and updated on the fly.

A key problem in filtering, which is only partially addressed by particle filters,
is to maintain a good description of the evolving posterior measure using
minimal computational effort. Recently, it has been shown that a new class of
methods developed for approximation distributions of solutions of stochastic
differential equations, collectively known as cubatures on Wiener space, can be
used to approximate the conditional distribution in the filtering problem. The
chapter by Litterrer and Lyons is a survey on cubature on Wiener space and
some related algorithms. It also describes how recombination can be added
to the basic algorithm as a way to control the number of particles in the
approximation when the method is iterated.

Part VIII contains contributions related to numerical methods in nonlinear
filtering. The contribution of Kushner considers two types of numerical algo-
rithms for nonlinear filters. The first is based on the Markov chain approx-
imation method, a powerful approach to numerical problems in stochastic
control. It yields an approximation to the conditional density and converges
in the weak sense as the approximation parameter goes to zero. Various forms

htt
p:/

/w
ww.pb

oo
ks

ho
p.c

om



12 D. Crisan & B. Rozovskiı̆

are developed and both convergence and robustness results are included. The
second type of approximation is called the assumed density approach, where
one supposes that the conditional density takes a given parametrized form,
and the evolution equations for the parameters are developed. Most typically,
this assumed density is Gaussian (more rarely, a Gaussian mixture) and the
parameters are the conditional mean and covariance. The method is heuristic,
but has been shown to give good results for many problems.

The chapter by Hairer, Stuart, and Voss is an overview of the Bayesian
approach to a wide range of signal processing problems in which the goal is to
find the signal. In the case of ordinary differential equations (ODEs) this gives
rise to a finite dimensional probability measure for the initial condition, which
then determines the measure on the signal. In the case of stochastic differential
equations (SDEs) the measure is infinite dimensional. The authors derive the
posterior measure for these problems, applying the ideas to ODEs and SDEs,
with discrete or continuous observations, and with coloured or white noise. The
authors highlight the common structure inherent in all of the problems, namely
that the posterior measure is absolutely continuous with respect to a Gaussian
prior. This structure leads naturally to the study of Langevin equations which
are invariant for the posterior measure and they highlight the theory and open
questions relating to these S(P)DEs.

The contribution of Clark and Vinter is concerned with an important class
of filtering problems referred to as tracking problems, where the objective is
to estimate the state of a moving target from noisy sensor measurements.
For many tracking problems of interest, the equations for the conditional dis-
tribution of the state are computationally intractable and the key challenges
therefore relate to their approximation. The chapter identifies an important
class of tracking problems, in which the nonlinearities involved in the models of
the state and observations processes are confined to the observations process.
Special cases involve bearings-only tracking, range-only tracking, and various
tracking problems where measurements are suppressed or degraded in some
“nonlinear” fashion. A general methodology is presented for constructing filters
for such problems which typically provide superior estimates to those obtained
by classical linearization techniques. The specific form taken by these filters in
four cases of interest is examined in detail. In the case of bearings-only tracking,
the filter is known as the shifted Rayleigh filter.

It is well known that numerical methods for nonlinear filtering problems,
which directly use the Kallianpur–Striebel formula, can exhibit computational
instabilities due to the presence of very large or very small exponents in both
the numerator and denominator of the formula. The chapter by Milstein and
Tretyakov introduces a class of computationally stable schemes by exploiting the
innovation approach. The authors propose Monte Carlo algorithms based on
the method of characteristics for linear parabolic stochastic partial differential
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equations. Convergence and some properties of the considered algorithms are
studied and variance reduction techniques are discussed. The chapter also
includes results of some numerical experiments.

The last part of the handbook includes a number of applications of nonlinear
filtering in financial mathematics:

The chapter by Frey and Runggaldier considers filtering problems that arise
in Markovian factor models for the term structure of interest rates and for
credit risk. The connections with the filtering problem is based on the fact that
investors act on the basis of only incomplete information about the factors. The
current state of the factors has to be inferred/filtered from observable financial
quantities. The main goal of the chapter is the pricing of derivative instruments
in the interest rate and credit risk contexts, but also other applications are
discussed.

The contribution of Elliott, Miao, and Wu introduces a generalized stochastic
volatility model to help price energy-related assets by capturing two critical
features: mean-reverting prices and a volatility which follows different dynam-
ics in different states of the world. Assuming the dynamics of the states are
represented by a hidden Markov chain, the authors apply filtering techniques
and the EM algorithm to a time-series model for parameter estimation. Several
new filters and closed form estimates for all parameters are derived in the paper.
Applications of the proposed model in other fields of finance are also discussed.

The contribution of Pham is a survey of the methods involved in portfolio
selection with partial observation. The author describes both the theoretical and
numerical aspects related to these optimization problems. The presentation is
divided in two parts. The first part covers the continuous-time problem: here,
the mean rates of return of the asset prices are not directly observable. Investors
observe only asset prices. By the method of change of probability and innovation
process in filtering theory, the partial observation portfolio selection problem is
transformed into a full observation one with the additional filter state variable,
for which one may apply the martingale or PDE approach. The following cases
for the modeling of the unobservable mean rate of return are investigated:
Bayesian, linear-Gaussian, and finite-state Markov chain. The second part cov-
ers discrete-time optimization problems: this context includes the case of unob-
servable volatility. The numerical approximation of the optimization problem
under partial observation is studied. Several numerical experiments illustrate
the results for hedging problems in the context of partially observed stochastic
volatility models.

The chapter by Scott and Zeng surveys the recent developments in a general
filtering model with counting process observations for the micromovement
of asset price and its related statistical analysis. The normalized and unnor-
malized filtering equations as well as the system of evolution equations for
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Bayes factors are reviewed. A Markov chain approximation method is used
to construct recursive algorithms and their consistency is proven. The authors
employ a specific micromovement model built upon the model linear stochastic
differential equation to show the steps to develop a micromovement model with
specific types of trading noises. The model is further utilized to show the steps
to construct consistent recursive algorithms for computing the trade-by-trade
Bayes estimates and the Bayes factors for model selection.
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